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Efficient generation of propagation-invariant spatially stationary partially coherent fields
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We propose and demonstrate a method for generating propagation-invariant spatially stationary fields in a
controllable manner. Our method relies on producing incoherent mixtures of plane waves using planar primary
sources that are spatially completely uncorrelated. The strengths of the individual plane waves in the mixture
determine the exact functional form of the generated coherence function. We use light-emitting diodes as the
primary incoherent sources and experimentally demonstrate the effectiveness of our method by generating several
spatially stationary fields, including a type that we refer to as the regionwise spatially stationary field. We also
experimentally demonstrate the propagation invariance of these fields, which is an extremely interesting and
useful property of such fields. Our work should have important implications for applications that exploit the
spatial coherence properties either in a transverse plane or in a propagation-invariant manner, such as correlation
holography, wide-field optical coherence tomography, and imaging through turbulence.
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I. INTRODUCTION

Fields having partial spatial coherence have been exten-
sively studied in the past few decades [1–3] and have found a
wide range of applications including wide-field optical coher-
ence tomography (OCT) [4], imaging through turbulence [5],
optical communication [6,7], particle trapping [8,9], atomic
optics [10], laser scanning [11], plasma instability suppression
[12], photographic noise reduction [13], optical scattering [14],
and second-harmonic generation [15]. A spatially partially
coherent field can be divided into two categories: spatially
stationary and spatially nonstationary. In analogy with the
temporally stationary fields, when the intensity of a field is
independent of the spatial position and when the two-point spa-
tial correlation function depends on the spatial positions only
through their difference, the field is called spatially stationary,
at least in the wide sense [16–25]. A spatially stationary field
has the unique property that its two-point correlation func-
tion is propagation invariant [19,25]. Propagation-invariant
spatially stationary fields have several unique applications
such as three-dimensional (3D) coherence holography [23]
and photon correlation holography [24]. If the field is not
spatially stationary, it is categorized as spatially nonstationary.

There are several different ways of producing spatially
partially coherent fields. While one of the earliest experiments
used a laser and an acousto-optical cell [25], later experiments
utilized a laser and a rotating ground glass plate (RGGP) in
order to produce fields with desired partial spatial coherence
[16,23,26–32]. More modern methods involve using a laser
and either a spatial light modulator (SLM) [33–36] or an
RGGP in combination with an SLM to achieve the purpose
[24,37,38]. As far as propagation-invariant spatially stationary
partially coherent fields are concerned, we are aware of only
two experimental studies. In the first experiment the field was
generated using a laser and an acousto-optic cell [25] and in
the second experiment the generation was done using a laser
and an RGGP [19]. Nevertheless, both these techniques have
demonstrated generation of only those cross-spectral density
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functions that can be represented as Fourier transforms of
circularly symmetric functions.

Thus, all the existing experimental techniques for producing
spatially stationary partially coherent fields and most tech-
niques for producing spatially nonstationary partially coherent
fields use a laser as the primary source, which, to begin with,
is spatially a completely correlated source. One then tries to
make the field emanating from such a source spatially partially
coherent by introducing randomness in the field path by using
either an acousto-optic cell [25], or an RGGP [16,23,26–32]
or an SLM [24,33–38]. On the other hand, in this article we
propose a technique that uses a primary source that is spatially
completely uncorrelated and we demonstrate generation of
very-high-quality propagation-invariant spatially stationary
fields, without having to introduce any additional randomness.
Furthermore, we show that our technique can produce any
propagation-invariant spatially stationary cross-spectral den-
sity function and not just the ones that are Fourier transforms
of circularly symmetric functions [19,25].

II. THEORY: PROPAGATION-INVARIANT SPATIALLY
STATIONARY PARTIALLY COHERENT FIELDS

Let us consider the situation shown in Fig. 1. A pla-
nar, monochromatic, spatially completely incoherent primary
source is kept at the back focal plane z = −f of a lens
kept at z = 0. The planar primary source along with the lens
constitutes our source of spatially partially coherent fields. We
represent the field radiating out from spatial location ρ ′ at z

by Vs(ρ ′,z). Since our primary source is spatially completely
incoherent, the fields Vs(ρ ′

1, − f ) and Vs(ρ ′
2, − f ) radiating

out from ρ ′
1 and ρ ′

2, respectively, at z = −f are completely
uncorrelated, that is,

〈V ∗
s (ρ ′

1, − f )Vs(ρ
′
2, − f )〉e = Is(ρ

′
1, − f )δ(ρ ′

1 − ρ ′
2). (1)

Here Is(ρ ′
1, − f ) is the intensity of the primary source at

z = −f . We note that no realistic primary source can truly
have a position correlation given by Eq. (1), which requires
that the spatial coherence length be zero. The smallest spatial
coherence length that can be associated with a primary source
is of the order of the wavelength λ of the source and
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FIG. 1. Schematic illustration of how a propagation-invariant
spatially stationary field can be generated using a spatially completely
uncorrelated primary source.

only a blackbody emitter can be idealized as such a source
[39]. Nevertheless, for a millimeter-size source at optical
wavelengths, the position correlations of the order of λ can
very well be approximated by Eq. (1). In our experiments, we
use light-emitting diodes (LEDs) as our primary incoherent
sources, which are considered spatially completely incoherent
in the sense that their position correlations are approximated
by the form given in Eq. (1) [40,41].

Thus, for our primary source whose position correlation is
represented by Eq. (1), every point on the source is radiating
out as an independent point source and since each of these
points is kept at the back focal plane of a converging lens,
the field Vs(ρ ′

1, − f ) radiating out from ρ ′
1 gets transformed

into a plane wave with amplitude a(q1) by the lens, where
q1 represents the transverse wave vector associated with the
plane wave [42,43]. Here we are assuming that the aperture
size of the lens is infinite. This turns out to be a very
good approximation for our purposes in this section and
the next; the effects due to a finite-aperture-size lens are
discussed and demonstrated in Sec.IV. The lens, therefore,
transforms the noncorrelation of the planar source in the
position basis to noncorrelation in the transverse-wave-vector
basis. The correlations between different transverse wave
vectors are quantified using the angular correlation function
A(q1,q2), which is defined as A(q1,q2) ≡ 〈a∗(q1)a(q2)〉e,
where 〈· · · 〉e represents the ensemble average. The angular
correlation function of our partially coherent source is the
angular correlation function A(q1,q2) at the exit face of the
lens, that is, at z = 0, and is thus given by

A(q1,q2) ≡ 〈a∗(q1)a(q2)〉e = Is(q1)δ(q1 − q2). (2)

Here Is(q1) is the spectral density of the field; it has the same
functional form as that of the source intensity. As we show
below, this form of the angular correlation function is the
requirement for the partially coherent field coming out of a
source to be spatially stationary and propagation invariant.

We next derive the cross-spectral density function at z = z

produced by our source. As worked out in Sec. 5.6 of Ref. [1],
if the plane-wave amplitude at z = 0 is a(q1), then the field
V (ρ1,z) at z = z within the paraxial approximation is given

by

V (ρ1,z) = eik0z

∫∫ ∞

−∞
a(q1)eiq1·ρ1e−i(q2

1 z/2k0)dq1. (3)

Here we have used the fact that r1 ≡ (ρ1,z), k1 ≡ (q1,k1z),
and k1z ≈ k1 − q2

1/2k1, with q1 = |q1| and k1 = |k1| = k0 =
ω0/c, where ω0 is the frequency of the field. The cross-spectral
density function W (ρ1,ρ2,z) ≡ 〈V ∗(ρ1,z)V (ρ2,z)〉e at z = z

is therefore

W (ρ1,ρ2,z) =
∫∫ ∞

−∞
A(q1,q2)

× e−iq1·ρ1+iq2·ρ2e−i[(q2
1 −q2

2 )z/2k0]dq1dq2. (4)

Equation (4) governs how spatial correlations of the field,
as represented by the cross-spectral density function, change
upon propagation in the region z > 0 after the lens. Substitut-
ing the form of the angular correlation function from Eq. (2)
into Eq. (4), we obtain

W (ρ1,ρ2,z) = W (�ρ,z) =
∫ ∞

−∞
Is(q)e−iq·�ρdq, (5)

where �ρ = ρ1 − ρ2. The intensity I (ρ,z) corresponding to
the above cross-spectral density function is

I (ρ,z) = W (ρ,ρ,z) =
∫ ∞

−∞
Is(q)dq = K, (6)

where K is a constant. We find that the cross-spectral
density function W (�ρ,z) in Eq. (5) is in the coherent-mode
representation, with the plane waves being the coherent modes.
In other words, our source produces a field that is an incoherent
mixture of plane-wave modes. As a result, the generated
field has the following properties. (i) The field is propagation
invariant. This is because the cross-spectral density function
as well as the intensity is independent of z. (ii) The field is
spatially stationary at a given z, at least in the wide sense. This
can be verified by noting that the intensity I (ρ,z) does not
depend on ρ and the cross-spectral density function depends
on �ρ only. (iii) The cross-spectral density function W (�ρ,z)
of the field is the Fourier transform of its spectral density
Is(q). This is the spatial analog of the Wiener-Khintchine
theorem for temporally stationary fields (see Sec. 2.4 of [1]).
Moreover, since the spectral density has the same functional
form as the intensity of the primary source, the cross-spectral
density function of the field is the Fourier transform of the
intensity profile of the primary source. We note that in our
technique there is no restriction on the form of the intensity
function Is(q1) that the primary incoherent source can have.
The primary source can be continuous or having a finite size
or even in the form of a collection of points. As a result, using
our technique, one can produce any custom-designed, spatially
stationary, propagation-invariant partially coherent field and
not just the ones that are Fourier transforms of circularly
symmetric functions [19,25].

III. EXPERIMENTAL DEMONSTRATIONS

Figure 2(a) shows the schematic of our experimental setup.
Our primary source is a commercially available 9-W planar
LED bulb. We use an interference filter centered at 632.8 nm
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FIG. 2. (a) Schematic diagram of the experimental setup. A planar, spatially incoherent primary source is placed at the back focal plane of
lens L1. The cross-spectral density of the field produced by the source is measured using the spatial light modulator. The propagation length z

is the distance between the lens L1 and the SLM, and the CCD camera is placed at the focal plane of lens L2. (b) Representative experimental
interference pattern produced by the double-slit simulated on the SLM and the associated one-dimensional plot.

having a wavelength bandwidth of 10 nm. The LED bulb
consists of nine separate LEDs arranged in a 3 × 3 grid. We
take the individual LEDs to be spatially completely incoherent
[40,41] in the sense that their spatial-correlation function
can be approximated by Eq. (1). The individual LEDs are
of dimensions 0.8 × 0.8 mm2 and the separation between
two nearest LEDs is 1.9 mm. We let the field produced by
our source at z = 0 propagate to z = z and then measure
the cross-spectral density function using a Young double-slit
pattern simulated on an SLM kept at z = z [44–46], with the
separation between the slits being �ρ. The distance between
the center of the field and the center of the double slit is
the offset parameter δ. We record the resulting interference
fringe pattern by keeping a CCD camera at the focal plane
of lens L2 and then capturing only the first diffraction order
due to the SLM. We note that since the two simulated slits are
exactly the same and since the field is uniform in intensity, the
magnitude |W (�ρ,z)| of the cross-spectral density function is
the visibility of interference fringes. Therefore, by measuring
the interference visibility as a function of the slit separation
�ρ, we directly measure |W (�ρ,z)| as a function of �ρ.
We further note that any pattern simulated on an SLM is
seen by only one polarization component of an incoming
field [46] and it is only this component that contributes at
the first diffraction order. The other polarization component,
if present, simply ends up at the zeroth diffraction order. Since
our measurements are made only at the first diffraction order,
only one polarization component gets measured and therefore
scalar theory of Sec.II should be sufficient to describe the
present experiments.

A typical interference pattern observed using the CCD
camera and the associated one-dimensional section of the
intensity pattern are shown in Fig. 2(b). Figure 3(a) is the
image of the central LED of our bulb. First of all, we make
measurements with this being our primary source. The focal
length f of lens L1 is 75 cm. Figure 3(b) shows the plot
of the intensity at z = 147 cm and Fig. 3(c) shows plots of
|W (�ρ,z)| at z = 147 cm as a function of �ρ for several
offset values δ. These results verify that the generated field is
spatially stationary. Figure 3(d) shows plots of |W (�ρ,z)| as a

function of �ρ for various propagation distances up to 3.9 m.
There is little variation between the different plots. This proves
that the cross-spectral density function of the generated field
is propagation invariant at least up to a distance of 3.9 m. We
note that the transverse coherence length of the field, which we
define to be the value of �ρ at which |W (�ρ,z)| drops down to
1/e, is about 0.5 mm and remains propagation invariant. This
is in contrast to the field produced by a bare primary source
of the same shape and size as that of the source in Fig. 3(a),
in which case the transverse coherence length, following the
conventional van Cittert–Zernike theorem, increases by about
5 times after propagating for 3.9 m.

Next we make measurements with our primary source
containing two spatially separated LEDs. The image of the
primary source is shown in Fig. 4(a). Figure 4(b) shows the
plot of the intensity at z = 65 cm. Figure 4(c) shows plots
of |W (�ρ,z)| as a function of �ρ for various values of the
offset parameter δ at z = 65 cm and Fig. 4(d) shows plots of
|W (�ρ,z)| as a function of �ρ at various z. These results again
demonstrate spatial stationarity and propagation invariance. It
is interesting to note that the cross-spectral density function in
this case is in the form of a fringe pattern, which is nothing
but the Fourier transform of our source shown in Fig. 4(a).

Using Eq. (5) and the image of our primary sources
shown in Figs. 3(a) and 4(a), we also calculate the theoretical
cross-spectral density functions and plot them along with the
experimental results in Figs. 3 and 4. Our reported experimen-
tal results match very well with the theoretical predictions,
demonstrating the accuracy and effectiveness with which a
custom-designed, spatially stationary, propagation-invariant
cross-spectral density function can be generated using our
method. In order to produce a field with a given cross-spectral
density function one simply needs to construct a primary
source with an intensity distribution that is the inverse Fourier
transform of the desired cross-spectral density function.

IV. EFFECTS DUE TO A FINITE-SIZE LENS

The theoretical modeling presented so far assumes that the
lens that constitutes our partially coherent source has an infinite
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FIG. 3. (a) The CCD camera image of the LED. (b) Plot of
intensity I (ρ,z) as a function of ρ at z = 147 cm. (c) Plots of
|W (�ρ,z)| as a function of �ρ at z = 147 cm for various values
of the offset parameter δ. (d) Plot of |W (�ρ,z)| as a function of
�ρ for various values of z. In (c) and (d) the black dashed curves
represent the theoretical prediction based on Eq. (5).

aperture size. However, in a realistic experimental situation
the aperture size of a lens is finite and in our case it is of
the order of 1 in. As discussed in Ref. [19] and as illustrated
in Fig. 5(a), the finite aperture size of the lens restricts the
propagation invariance properties to a distance zmax, given by
zmax = Df/s, where D is the aperture size of the lens, f is
the focal length, and s is the size of the primary source. In
order to experimentally demonstrate zmax, we used the LED
source shown in Fig. 3(a) with an f = 30 cm lens. Figures 5(b)
and 5(c) show how the transverse coherence length changes
as a function of z for two different values of the aperture
size D. As the aperture-size becomes bigger, zmax gets larger.
Nevertheless, even with realistic aperture sizes, one can easily
achieve a zmax of up to tens of meters.

Although the finite aperture size of the lens may seem to
only have the restricting effect on zmax, it can in fact lead to
restructuring of spatial correlations in a way that can have its

FIG. 4. (a) The CCD camera image of the LED. (b) Plot of
intensity I (ρ,z) as a function of ρ at z = 65 cm. (c) Plot of |W (�ρ,z)|
as a function of �ρ at z = 65 cm for various values of the offset
parameter δ. (d) Plot of |W (�ρ,z)| as a function of �ρ for various
values of z. In (c) and (d) the black dashed curves represent the
theoretical prediction based on Eq. (5).

own set of advantages. We now report such a restructuring
effect when the primary source is in the form of two spatially
separated LEDs, as shown in Fig. 4(a). As illustrated in
Fig. 6(a), the propagation-invariant field generated due to
such a primary source has two distinct regions over which
spatial stationarity is observed. Region I receives plane-wave
contributions from both the LEDs, while region II receives the
contributions from a single LED only. This leads to the two
regions having two distinct spatially stationary propagation-
invariant cross-spectral density functions. We refer to such
fields as regionwise spatially stationary fields. Figure 6(c)
shows the plot of |W (�ρ,z)| as a function of �ρ for various
values of the offset parameter δ in region II. These results
demonstrate the spatial stationarity in region II. The spatial
stationarity of region I is already shown in Fig. 4(c). Therefore,
the finite aperture size of the lens offers an advantage in
creating regionwise spatially stationary fields.
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FIG. 5. (a) Diagram illustrating how the aperture size D of the
lens and the spatial width s of the primary source fixes zmax. Also
shown are plots of the transverse coherence length as a function of z

for (b) D = 5.6 mm and (c) D = 6.5 mm.

V. CONCLUSION

We have proposed and demonstrated a method for gen-
erating custom-designed, propagation-invariant, spatially sta-
tionary fields. Our method can be used for generating any
spatially stationary cross-spectral density function as long
as it has a coherent-mode representation in the plane-wave
basis. Our experimental technique is based on using a spatially
uncorrelated primary source and does not require introduction
of any additional randomness, as is required by most other
conventional methods. We have experimentally demonstrated
the effectiveness of this technique by generating different
spatially stationary fields, including a regionwise spatially
stationary field. We have also demonstrated propagation
invariance up to a few meters for several of these spatially
stationary fields. The high efficiency and control inherent

FIG. 6. (a) Diagram illustrating the generation of regionwise
spatially stationary fields. (b) Plot of intensity I (ρ,z) as a function
of ρ at z = 65 cm. (c) Plot of |W (�ρ,z)| as a function of �ρ at
z = 65 cm for various values of the offset parameter δ.

in our technique can have important practical implications
for several applications. The propagation-invariant spatially
stationary fields are already a necessity for applications such as
correlation holography [23,24]. We believe that such fields can
be an enabler for the 3D version of imaging through turbulence
[5] and wide-field OCT [4]. Moreover, the regionwise spatially
stationary fields could provide unique benefits when the feature
sizes are spatially nonuniform.

ACKNOWLEDGMENTS

We acknowledge financial support through Initiation Grant
No. IITK /PHY /20130008 from Indian Institute of Technology
Kanpur, India and through a research grant from the Science
and Engineering Research Board, Department of Science and
Technology, Government of India, No. EMR/2015/001931.

[1] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, New York, 1995).

[2] Y. Cai, Y. Chen, and F. Wang, J. Opt. Soc. Am. A 31, 2083
(2014).

[3] M. W. Hyde IV, S. Basu, D. G. Voelz, and X. Xiao, J. Appl.
Phys. 118, 093102 (2015).

[4] B. Karamata, P. Lambelet, M. Laubscher, R. Salathé, and T.
Lasser, Opt. Lett. 29, 736 (2004).

033815-5

https://doi.org/10.1364/JOSAA.31.002083
https://doi.org/10.1364/JOSAA.31.002083
https://doi.org/10.1364/JOSAA.31.002083
https://doi.org/10.1364/JOSAA.31.002083
https://doi.org/10.1063/1.4929811
https://doi.org/10.1063/1.4929811
https://doi.org/10.1063/1.4929811
https://doi.org/10.1063/1.4929811
https://doi.org/10.1364/OL.29.000736
https://doi.org/10.1364/OL.29.000736
https://doi.org/10.1364/OL.29.000736
https://doi.org/10.1364/OL.29.000736


AARAV, BHATTACHARJEE, WANARE, AND JHA PHYSICAL REVIEW A 96, 033815 (2017)

[5] B. Redding, M. A. Choma, and H. Cao, Nat. Photon. 6, 355
(2012).

[6] J. C. Ricklin and F. M. Davidson, J. Opt. Soc. Am. A 19, 1794
(2002).

[7] Y. Gu and G. Gbur, J. Opt. Soc. Am. A 27, 2621 (2010).
[8] C. Zhao, Y. Cai, X. Lu, and H. T. Eyyuboğlu, Opt. Express 17,
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